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Abstract 

Reverse time migration (RTM) solves the acoustic or 
elastic wave equation by means of the extrapolation from 
source and receiver wavefield in time. A migrated image is 
obtained by applying some criteria known as imaging 
condition. The zero lag cross-correlation between source 
and receiver wavefields is the commonly used imaging 
condition. However, this imaging condition produces low-
spatial-frequency noise or artifacts, due to the strong 
contrasts in velocity field (Pestana et al., 2014). Several 
imaging techniques have been proposed to reduce the 
artifacts occurrence. Derivative operators as Laplacian are 
the most frequently used. In this work, we propose the 
usage of a technique based on a spiral phase filter ranging 

from 0 to 2, and a toroidal amplitude bandpass filter, 
known as Laguerre-Gauss transform. Through numerical 
experiments we present the application of this particular 
filter on SEG EAGE salt model and Sigsbee 2A model. We 
also present evidences that this method improves RTM 
images by reducing the artifacts and notably enhance the 
reflective events. 

Introduction 

Reverse time migration solves the two-way acoustic or 
elastic wave equation, by the propagation in time domain 
of the source wavefield in forward direction, and of the 
receiver wavefield in backward direction. The migrated 
image is obtained by the cross-correlation between source 
and receiver wavefields summed over the sources 
(Claerbout, 1985). 

The cross-correlation imaging condition produces low-
frequency noise called artifacts due to the superposition 
between waves (such as head waves, diving waves and 
backscattered waves) immersed in the source and receiver 
wavefields and the migrated images amplitude.  

To reduce the artifacts, several techniques have been 
proposed. Youn and Zhou (2001) used the Laplacian 
image reconstruction to process each frame from 
correlation for an individual shot recorded, Fletcher et al. 
(2005), added a directional damping term to the non-
reflecting wave equation proposed by Baysal et al. (1984) 
and Yoon and Marfurt (2006) used the Poynting vectors to 
improve the cross-correlation imaging condition.  

Kaelin and Guitton (2006) normalized the image of the 
cross-correlation diving by the source or the receiver 
illumination, Guitton et al. (2007) used the smooth imaging 
condition and the least square attenuation method, Costa 
et al. (2009) combined the obliquity factor weight and 
illumination compensation in the imaging condition, 
Whitmore and Crawley (2012) used the inverse scattering 
theory to attenuate the backscattered waves and Pestana 
et al. (2014) based on the relation of inversion and imaging, 
proposed the impedance sensitivity kernel imaging 
condition combined with Poynting vector.  

In this paper we propose a method to improve the migrated 
image and diminish the artifacts occurrence by applying a 
Laguerre Gauss filter with a spiral phase filter to implement 
a Radial Hilbert transform to process the cross-correlation 
images. First, we describe the Cross correlation imaging 
condition and the Laplacian filtering, which is a simple and 
popular way to remove the artifacts in RTM images. 
Second, the proposed method is described. Finally, we 
compare the images obtained by cross correlation imaging 
condition, laplacian filtering, and the Laguerre Gauss 
filtering applied to two synthetic datasets, to present 
evidences from the effectiveness of our imaging 
implementation to reduce the low-frequency spatial noise. 

Cross-correlation imaging condition 

The zero-lag cross-correlation between the extrapoled 
source and receiver wavefields is the imaging condition 
conventionally used in RTM. The cross-correlation imaging 
condition was proposed originally by Claerbout (1971, 
1985) and as defined as follows: 

𝐼𝑐𝑐(𝑥, 𝑧) = ∑ ∑ 𝑆(𝑥, 𝑧; 𝑡𝑖; 𝑠𝑗)𝑅(𝑥, 𝑧; 𝑡𝑖; 𝑠𝑗)

𝑡𝑚𝑎𝑥

𝑖=1

𝑠𝑚𝑎𝑥  

𝑗=1

 (1) 

where 𝑧 and 𝑥 denote depth and horizontal axis 

respectively, 𝑡 is time, 𝑆(𝑥, 𝑧; 𝑡𝑖; 𝑠𝑗) is the forward 

propagated source wavefield, 𝑅(𝑥, 𝑧; 𝑡𝑖; 𝑠𝑗) is the backward 

propagated receiver wavefield, 𝑡𝑚𝑎𝑥 is the total time, 𝑠𝑚𝑎𝑥 

is the total number of sources, and 𝐼𝑐𝑐 is the cross-

correlation image. 

Several implementations of RTM using the imaging 
condition of (1) have been reported by Baysal et al. (1983, 
1984), Youn and Zhou (2001), Kaelin and Guitton (2006), 
among others.  

This method can be affected by the backscattered and 
turning waves in the modeling process, which cause 
incident and reflected wavefields to be in phase at 
locations that not correspond to actual reflection points. 
These wavefields cause strong correlation noise in the 
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seismic image (Artifacts) (Whitmore and Crawley, 2012). 
These artifacts occur most frequently in shallow parts and 
hard interfaces in the velocity model, and can mask 
important details in the image.  

Laplacian filtering 

Second-order derivative edge detection techniques are 
based on spatial second-order differentiation to enhance 
edges. An edge is marked if a significant spatial change 
occurs in the second derivative (Pratt, 2001). The edge 
Laplacian (Laplacian image reconstruction) of an image 
function 𝐹(𝑥, 𝑦) is defined as: 

𝐺(𝑥, 𝑦) = −∇2{𝐹(𝑥, 𝑦)} (2) 

where, the Laplacian operator is:  

∇2=
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
 (3) 

𝐺(𝑥, 𝑦) is zero if 𝐹(𝑥, 𝑦) is constant or the amplitude 

changes linearly. If the change rate of 𝐹(𝑥, 𝑦) is greater 

than zero 𝐺(𝑥, 𝑦) exhibits a sign change at the point of 

inflection in 𝐹(𝑥, 𝑦). The zero crossing of 𝐺(𝑥, 𝑦) indicates 

the presence of an edge. The negative sign from (2) 
indicates that the zero crossing of 𝐺(𝑥, 𝑦) has a positive 

slope for an edge whose amplitude increases from left to 
right or bottom to top in an image (Pratt, 2001). Youn and 
Zhou (2001) used the Laplacian image reconstruction 
operator to correlated image frames. The Laplacian image 
reconstruction is given by:  

𝐼𝐿𝑃(𝑥, 𝑧) =
𝜕2

𝜕𝑥2
𝐼𝑐𝑐(𝑥, 𝑧) +

𝜕2

𝜕𝑧2
𝐼𝑐𝑐(𝑥, 𝑧) (4) 

where 𝐼𝑐𝑐(𝑥, 𝑧) is the image frame registered (Cross 

correlation image). An effect associated with the 
application of the Laplacian operator is a 90° phase shift 

and an amplitude change due to the second-order 
differential. 

Laguerre-Gauss filtering 

Linear integral transforms have been used in multiple 
knowledge fields such as quantum mechanics, quantum 
theory fields, quantum dispersion, viscoelasticity, circuit 
theory, dielectric theory, magnetic resonance, optical 
metrology, among others (Macdonald and Brachman, 
1956, Sierra-Sosa et. Al, 2013, 2014, Angel-Toro, 2013). 
In general, these transforms turn a given function 𝑓(𝑧) 

where the 𝑧 variable may be complex or real valued, into 

another function 𝑔(𝜔) where the variable w also may be 

complex or real valued, these transforms can be defined 
as: 

𝑔(𝜔) = ∫ 𝐾𝑛(𝜔, 𝑧)
𝐶𝑛

𝑓(𝑧)𝑑𝑧 (5) 

where 𝐾𝑛 with 𝑛 = 1, 2 are generic functions from the 

variables 𝑧 and 𝜔 known as transform kernel, for both the 

transform with 𝑛 = 1 as for its inverse with 𝑛 = 2; 𝐶𝑛 

denotes the path in the complex plane. In particular, if 𝑓(𝑧) 

is well-known and 𝐾1 and 𝐶1 are specified, it is possible to 

obtain 𝑔(𝜔) if the function is integrable. On the other hand, 

this equation is also a linear integral transform for 𝑓(𝑧) 

when 𝑔(𝜔), 𝐾2 and 𝐶2 are specified. For each integral 

transform there exist a relation that turns the transformed 
function into the original function, usually this relation is 
also an integral transform, that may be written in terms of 
algebraic operations. There exist a biunivocal relation 
among the function and its transform (Debnath and Bhatta, 
2010). 

If kernels 𝐾1 and 𝐾2 are equal and the integration paths 

between the transform and its inverse are equal, the 
relation between 𝑓(𝑧) and 𝑔(𝜔) are reciprocal and known 

as conjugated functions. When these functions are 
identical except for the sign, like in Hilbert transform, the 
relations are contra-reciprocal. The integral transforms are 
useful to obtain a complex distribution similar to the phase 
from real valued functions, these distributions are known 
as pseudo-phase maps (Freund and Freilikher, 1997). 
Allowing to obtain an analytic signal from a real valued 
function, analytic signal concept was introduced by Gabor 
in communications theory for 1-dimensional signals 
(Debnath and Bhatta, 2010). Usually, an analytic signal is 
defined by the difference of the real part of the original 
signal and its mean value, and an imaginary part obtained 
by using an integral transform from real signal. 

Laguerre Gauss transform kernel uses a pure-phase 
function with a vortex structure in frequency domain, 
defined as 𝛽(𝑓𝑥, 𝑓𝑦) = arctan(𝑓𝑦/𝑓𝑥). The particular 

property from this spiral phase function is that is composed 
by a heavy-side function with a 𝜋 gap when crossing the 

origin in every angular direction. In the amplitude the kernel 
includes a toroidal geometry doing a band-pass filtering 
depicted in Figure 1. 

  

(a) (b) 

Figure 1. (a) Spiral Phase Function (b) Toroidal amplitude 

Let 𝐼(𝑥, 𝑦) be the original intensity distribution from an 

image and 𝐼(𝑓𝑥 , 𝑓𝑦) its Fourier transform. 𝐼(𝑥, 𝑦) may be 

related with its respective analytic signal 𝐼(𝑥, 𝑦) by using a 
transformation kernel 𝐿𝐺(𝑓𝑥 , 𝑓𝑦) 

𝐼(𝑥, 𝑦) = ∬ 𝐿𝐺(𝑓𝑥 , 𝑓𝑦)𝐼(𝑓𝑥 , 𝑓𝑦)𝑒2𝜋𝑖(𝑓𝑥𝑥,𝑓𝑦𝑦)𝑑𝑓𝑥𝑑𝑓𝑦

∞

−∞

 (6) 

𝐿𝐺(𝑓𝑥 , 𝑓𝑦) = (𝑓𝑥 + 𝑖𝑓𝑦)𝑒
−(

𝑓𝑥
2+𝑓𝑦

2

𝜔2 )
= 𝜌𝑒

−(
𝜌2

𝜔2)
𝑒𝑖𝛽 

(7) 
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where 𝜌 = √𝑓𝑥
2 + 𝑓𝑦

2  and 𝛽(𝑓𝑥, 𝑓𝑦) = arctan(𝑓𝑦/𝑓𝑥) are 

the polar coordinates in the spatial frequency domain. The 
bandpass filter can be controlled by choosing the 
bandwidth parameter 𝜔 (Wang et al., 2006), which 

changes the spatial frequency distribution in the obtained 
complex field. In this case, 𝜔 tends to one in order to 

preserve image spatial frequency distribution and perform 
the bandpass filter component from Laguerre Gauss. 

The Laguerre-Gauss filter allows to realize anisotropic 
radial Hilbert transform without resolution loss (Gou et al., 
2006), and excluding any DC component of the original 
input function. 

Numerical examples 

We show the results for two synthetic datasets: 2D SEG-
EAGE salt model and Sigsbee 2A model applying the 
Laguerre-Gauss filter introduced above. We applied RTM 
using own C parallelized algorithms implemented with a 
high order finite difference scheme (Eight order). The RTM 
images have been obtained using the zero lag cross-
correlation imaging condition, the Laplacian filtering and 
the Laguerre-Gauss filtering.   

The 2D SEG-EAGE velocity model is shown in Figure 2. 

 

Figure 2. 2D SEG-EAGE velocity model 

In Figure 3a the RTM image obtained from zero lag cross 
correlation imaging condition given by equation 1 is shown. 
The image was obtained using only ten shots.  

The image is contaminated with artifacts in the shallow 
parts and near the salt body, and white spots on the bottom 
caused by backscattering hiding some details of 
subsurface structures.  

In Figure 3b we show the RTM result using the Laplacian 
filtering which shows a good reduction of artifacts. To apply 
this filter reduces low frequency information and increases 
the high frequency noise (Guitton et al., 2007). 

Figure 3c presents the image from using the Laguerre-
Gauss filtering presented in equations 6 and 7. We 
demonstrate that the Laguerre-Gauss filter removes the 
undesired low frequency noise in the RTM images.   

Applying the Laguerre-Gauss Filter to cross correlation 
image the resulting image is improved: subsurface 
structures are more defined and the edges of the salt dome 
are enhanced. The artifacts in shallow parts and near the 
top salt dome are significantly reduced. 

 

(a)

 

(b) 

 

(c) 

Figure 3. 2D SEG-EAGE RTM using: a) Cross correlation imaging 
condition b) Cross correlation imaging condition plus Laplacian 
filter c) Cross correlation imaging condition plus Laguerre-Gauss 
filter 

In Figure 4, a close up view of two sections (Marked with 
yellow boxes) of the migrated image are presented. These 
were chosen due to its structure complexity. The artifacts 
reduction in images become apparent, by conducting the 
proposed technique images are improved and the salt 
body flanks are enhanced. 
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(a) 

  

(b) (c) 

  

(d) (e) 

Figure 4. Detail of 2D SEG-EAGE RTM image with: a) Details of 
the outline regions; b) and d) Laplacian filtering; c) and e) 
Laguerre-Gauss filtering 

Similarly, we apply the Laguerre Gauss filtering to 2D 
Sigsbee 2A model. Sigsbee 2A is a synthetic model of 
deep water in the Gulf of Mexico. It is characterized by the 
complex salt shape with rugose salt top found in this area. 
The velocity model is shown in Figure 5 . 

In Figure 6 is shown a comparison of images obtained by 

zero lag cross-correlation imaging condition, laplacian and 

La-guerre Gauss filtering. The RTM image was obtained 

using only sixteen shots distributed along the surface. 

Figure 6a shows the conventional cross correlation image 

where we can be observed that the low frequency noise is 

very strong near the salt body. Applying the laplacian 

filtering, the low frequency noise is reduced significantly. 

This effect is presented in Figure 6b. The result obtained 

by Laguerre-Gauss filtering is shown in Figure 6c. The 

noise is strongly reduced near the salt body and the 

structures are enhanced. Likewise, the effect of sources in 

the surface are significantly attenuated. 

 

Figure 5. 2D Sigsbee 2A velocity model 

 
(a) 

 
(b) 

 
(c) 

Figure 6. 2D Sigsbee 2A RTM using: a) Cross correlation imaging 
condition; b) Cross correlation imaging condition plus Laplacian 
filtering; c) Cross correlation imaging condition plus Laguerre-
Gauss filtering. 
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In order to verify that the results obtained by using the 
proposed technique match the velocity model interfaces, 
we proceed to overlap the found interface structures using 
red lines. Red lines are obtained eroding the contrast 
inverted Laguerre-Gauss grayscale images, by means of 
the convolution between the image and a disk with 2-pixel 
radius. The objects smaller than the mask disappear and a 
zero is assigned in its place, the positions of the remaining 
objects are assigned a one. To these binarized image a 
skeletonization process is applied by obtaining the 
distance transform of the image. The image skeleton lies 
along the transform singularities.  

Figure 7 presents the interfaces obtained when using the 
proposed technique overlapped with the velocity model in 
a) for SEG-EAGE salt model and in b) for Sigsbee 2A 
model, it should be noted the high correspondence 
between the obtained interfaces with those presented in 
each model. 

 

(a) 

 

(b) 

Figure 7. Comparison between images obtained with Laguerre 
Gauss filtering and the initial models: a) SEG-EAGE salt model; b) 
Sigsbee 2A model. 

Conclusions 

We have proposed a technique to attenuate RTM artifacts 
after the zero-lag cross-correlation imaging condition. This 
method uses the Laguerre Gaussian filter to reduce the 
low-frequency spatial noise and enhances the edges in the 
image. To apply this filter to the image obtained with cross-

correlation imaging condition, the low-frequency noise 
(artifacts) was removed and the reflective events were 
more defined. This filter enhances the edges without 
resolution loss. 
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